Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662411

RESUMO

Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.


Assuntos
Biodiversidade , Ecossistema , Herbivoria , Insetos , Clima Tropical , Animais , Insetos/fisiologia , Piper/fisiologia
2.
Sci Rep ; 11(1): 17247, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446754

RESUMO

Foundational hypotheses addressing plant-insect codiversification and plant defense theory typically assume a macroevolutionary pattern whereby closely related plants have similar chemical profiles. However, numerous studies have documented variation in the degree of phytochemical trait lability, raising the possibility that phytochemical evolution is more nuanced than initially assumed. We utilize proton nuclear magnetic resonance (1H NMR) data, chemical classification, and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade Radula (Piper; Piperaceae). Sequencing data substantially improved phylogenetic resolution relative to past studies, and spectroscopic characterization revealed the presence of 35 metabolite classes. Metabolite classes displayed phylogenetic signal, whereas the crude 1H NMR spectra featured little evidence of phylogenetic signal in multivariate tests of chemical resonances. Evolutionary correlations were detected in two pairs of compound classes (flavonoids with chalcones; p-alkenyl phenols with kavalactones), where the gain or loss of a class was dependent on the other's state. Overall, the evolution of secondary chemistry in Radula is characterized by strong phylogenetic signal of traditional compound classes and weak phylogenetic signal of specialized chemical motifs, consistent with both classic evolutionary hypotheses and recent examinations of phytochemical evolution in young lineages.

3.
Mol Phylogenet Evol ; 156: 107022, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242585

RESUMO

Juniper (Juniperus) is an ecologically important conifer genus of the Northern Hemisphere, the members of which are often foundational tree species of arid regions. The serrate leaf margin clade is native to topologically variable regions in North America, where hybridization has likely played a prominent role in their diversification. Here we use a reduced-representation sequencing approach (ddRADseq) to generate a phylogenomic data set for 68 accessions representing all 22 species in the serrate leaf margin clade, as well as a number of close and distant relatives, to improve understanding of diversification in this group. Phylogenetic analyses using three methods (SVDquartets, maximum likelihood, and Bayesian) yielded highly congruent and well-resolved topologies. These phylogenies provided improved resolution relative to past analyses based on Sanger sequencing of nuclear and chloroplast DNA, and were largely consistent with taxonomic expectations based on geography and morphology. Calibration of a Bayesian phylogeny with fossil evidence produced divergence time estimates for the clade consistent with a late Oligocene origin in North America, followed by a period of elevated diversification between 12 and 5 Mya. Comparison of the ddRADseq phylogenies with a phylogeny based on Sanger-sequenced chloroplast DNA revealed five instances of pronounced discordance, illustrating the potential for chloroplast introgression, chloroplast transfer, or incomplete lineage sorting to influence organellar phylogeny. Our results improve understanding of the pattern and tempo of diversification in Juniperus, and highlight the utility of reduced-representation sequencing for resolving phylogenetic relationships in non-model organisms with reticulation and recent divergence.


Assuntos
Cloroplastos/genética , Genoma de Planta , Juniperus/genética , Filogenia , Folhas de Planta/anatomia & histologia , Análise de Sequência de DNA , Sequência de Bases , Teorema de Bayes , DNA de Cloroplastos/genética , Fósseis , Geografia , Hibridização Genética , Funções Verossimilhança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA